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unexpected. If the formula for a double diaphragm, one

from each side in an unstepped waveguide, is examined, it

is readily seen that the separate capacitance terms do not

simply add. There is a mutual coupling between them, as

would indeed be expected, accompanying the change of

aperture field that one diaphragm induces on the other.

Apparently, this rather general feature is absent in the

two-to-one waveguide step with a junction diaphragm.

Although the field is distorted by the diaphragm, the net

excess charge due to the step is merely redistributed, a

rather unexpected outcome. The formula has been

checked by colleagues who find it correct, but who have

no physical explanation for the finding. It is not known if

it is a freak result coincidental on the two-to-one step

ratio. Since, currently, the singular integral equation tech-

nique can only handle this case the effect of altering the

step ratio on the diaphragm interaction is not, at the

present time, resolvable.
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The Susceptance of an Annular Metallic Strip
in a Circular Waveguide with
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Almruct—me principal aims of this paper are twofold: 1) to solve the

problem of the scattering of a thin, perfeetly conducting aonufar strip

suspended in a multimodal circofar wavegufde in which any nomher of

‘l&n modes eau propagate, and with the aid of tbfs rcsul~ 2) to give the

suseeptance of the thin amrufar strip io monommfaf circular guide with an

incident ml mode. These are treated with a variational approach.

Applying the appropriate Green’s functions to the continuity eqnations

for the transveme electric field yields a variational expansion for the

aeatterhrg matrix elemeuts. Thfs is treated with a RayleigfAtftz prueedore

and matrix methods.

Curves of normafii susecptanee as a fonctfon of the free-space

wavelength and the size of the aonotar metaWc strip are shown. These

results are in good agreement with experimental data.

Tables of the scattering coefficients for a typieaf wavelength versus strip

size are afso included.

I. INTRODUCTION

I N RECENT YEARS, an experimental millimeter-

wave telecommunication system has been constructed

in our country [1]. The circular waveguide capable of

propagating the dominant circular-electric mode is ideally

suited as a low-loss transmission line in the rnillimeter-
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Fig. 1. Metaltic plate diaphragms of zero thickaess and their equiv-
alent circuit (T&l mode in circular wavegnide).

wave region. Inductive metal irises of zero thickness in

such circular waveguides (see Fig. 1) have been investi-

gated and documented [2]–[4]. In these reports, the find-

ing of the susceptance when the TEOI mode was incident

was the main goal,

Problems of susceptance for discontinuities in wave-

guides have been widely studied during the past decade.

Except for a few special discontinuities, exact solutions

are not available and approximate methods must be used.

Of the approximate techniques, the variational and in-

tegral-equation methods are applicable to a wide range of

problems, and produce sufficiently accurate results for

most purposes. The former method is described by Collin
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Fig. 2. Annular metaltic strip of zero thickness and its equivalent
network ~~~, n = 1,..., a modes in waveguide). (a) Cross-sectional
view. (b) Side view. (c) Equivalent network.

[5], while the work of Lewin [6] is well known in connec-

tion with the latter.

Before the adveat of high-speed computers, it was

advantageous to expend considerable effort in manipulat-

ing solutions analytically into a form which minimized the

subsequent computational effort, It is now often more

convenient to use methods which are analytically simple,

but require great amounts of computation. Furthermore,

many problems of practical interest can be solved only by

the use of such straightforward methods.

This paper is concerned with the determination using

computerized methods of the susceptance and the scatter-

ing matrix of an annular metallic strip (see Fig. 2) to

incident TEOfl modes. The annular strip placed in the

circular waveguide in which the TEO1 mode can propa-

gate, but in which the higher circular electric modes

cannot, acts as a shunt inductive susceptance, as shown in

Fig. l(d). If the higher TEo~ (n= 1,2,, . . ,a) modes can

also be assumed to propagate, on the other hand, the

annular strip may be represented by a multiports equiv-

alent network as shown in Fig. 2(c).

An annular strip might be useful, for example, in build-

ing a bandpass filter, Two annular metallic strips placed

in the circular waveguide an integral multiple of half-wave

lengths apart behave as a cavity resonator for the incident

TEOl mode. These cavity resonators with a quarter wave

length separation constitute a bandpass filter for the TEOI

mode in the circular waveguide. A bandpass filter of this

type has been shown by the authors [7].

Recently, a very ingenious technique for obtaining an

equivalent network for this discontinuity in a rectangular

waveguide with incident TE~O mode has been presented

by Rozzi et al. [8]. It is possible to obtain an equivalent

wide-band network with frequency-independent elements.

It is desirable to apply this technique to the present

discontinuity in the circular waveguide, but straightfor-

ward application cannot be adopted due to the difficulties
in analytical procedures for the circular coordinate sys-

tem. Therefore, instead of that technique, we use a

numerical method, requiring large amounts of computa-

tion, but analytically simple.

In the first part of this paper, the problem of the

scattering coefficient is investigated for a thin, perfectly

conducting annular strip suspended in a multimodal

waveguide in which TEOfl (n= 1,2,. . . ) modes can prO~F3l-

gate. Applying the appropriate Green’s function to the

continuity equations for the transverse electric field yield ~s

a variational expansion for the scattering matrix elements.

This expansion is then treated with a Rayleigh–Ritz prc)-

cedure and matrix methods.

In the second part of this paper, the susceptance of this

annular strip in a monomodal circular guide with an

incident TEO1 mode is developed. The normalized suscep-

tance B/ Y1 is obtained using the well-known relation

jB/ Y, = – 2~1 ,/(1 + S’l,) for the scattering matrix S.

H. VARIATIONAL EXPRESSION OF THE SCATTERING

COEFFICIENT

The annular metallic strip shown in Fig. 2 is assumed to

possess infinite conductivity and negligible thickness. The

solution to this problem will be formulated in terms of a

variational expression involving the current on the armu-

Iar strip located at z = O.

Let a TEOJ mode be the incident mode. The incident

electric field has only a @ component. Since the annular

strip is uniform in the @ direction, the only higher modes

excited by the annular strip are the TEO~ mc~des. The

incident field excites a current distribution ~.(,~) on the

annular strip. This current flows in the @ direction with a

constant amplitude, since the incident field has no varia-

tion with respect to Q. The field excited by the annular

strip in the waveguide may be evaluated in terms of

currents on the annular strip using Green’s function for

the TEO. modes.

With strip and r’ denoting the surface and radius,

respectively, of an annular strip, the excited field E. is

given by

E,(r, z)= ~ G(r, z;r’)~(r’) ds’ [5]. (1)
Strip

~(r’) is the current distribution excited by the incident

TEO, mode having unit amplitude. Therefore, ds’ = 2m-’ dr’

(r, <r’ <r2), and

G(r, z;r’)= –~ ~
Jl(u~r)

Jl(unr’)e - ‘“1=1 (2)
2na2 n= I I’.J~(L)

[5], where u. =K/a, r. =(u~–k2)1t2, ti is the angular

frequency, p is the magnetic permeability, a is the radlius

of the circular waveguide, J.(x) is the Bessel function of

the first kind for order n, M is the nth root of Jl(x) ZX=O,

k = O( IM)l/2 = 27r/A is the free-space wavenumbm-, and (~is

the electric permitivity.

It is evident, from (1) and (2), that the discontinuity

excites an infinite number of modes. However, if the
waveguide is standard or moderately oversize, only a

limited number of modes appear at a point onl the guide

sufficiently removed from the strip.

Now consider the case in which the guide cross section

is arranged so that only a modes propagate, the remaining

modes being damped exponentially. In this case, a ‘far-

field equivalent circuit of the discontinuity is as illus triited
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in Fig. 2(c), where terminals TI and TJ are placed at

z =0-, and 0+, respectively. V.+ (n= 1,”. “,2a) and V.–

(n=l,... ,2a) are the amplitudes of the electric field in

the incident and reflected wave components, respectively,
of the TEO~ mode field at terminals.

The transverse electric fields at the terminal plane (z=

O) are described by

E+,(r) =( ~+ + J’-)+j(~) (3)

where o~(r) are the mode functions in the transverse form
of the TEOj mode. The normalization of the mode func-

tions is such that the total inward power flow at the

terminal is given by 1/2(] ~+ 12– I ~.- [z); corresponding to

the choice of unity as the characteristic impedance of the

jth line [9]. The normalized mode function is described by

()%(’)= ‘~ “2 1—--Jl(zy).
7rrj do(~)

(4)

From (1), (2), and (4), the reflected TEOi mode is seen to

be

E,i(r,z)= – ~@i(r)j +,(r’)~(r’) ds’ “e-rflzl. (5)
strip

Setting z = O and l?fi(r, O)= Rti@i(r), we get

Rti = – + ~ @,(r’)~(r’) d’ (6)
strip

where I?j is the reflection coefficient of the TEOI mode for

an incident TEOj mode.

On the other hand, the following continuous equations

for the conductive surface of the strip (z= O) are obtained

for an incident TEOj mode:

@y(r) + ~ R@~(r) = ~ T~J@~(r)=0 (7)
~=] ~=1

qcjj(r) – j YflRn,@n(t-)– j y. TJ%r(T) = ~(~) (8)
~=1 ~=]

where Y.= I’~/jtip and T~j is the transmission coefficient

of the TEO~ mode for an incident TEOJ mode. Multiplying

(8) by +~(r), and integrating over the cross section of the

waveguide, we get

—
i Y.(% + TnJ)Ju,de@n(’)+k(’) ~~. (9)

~=]

Using the orthogonal properties of the Bessel function, we

have

J %(~)+k(~)~.=~ (lo)
grnde k

where ~.k is the Kronecker’s delta. Combining (1 O) with

(9), we get

J @k(r)4(r)A=q+-;(Rk,+Tti)(ha)
guide k

hence,

From (7) we have

+,(~’)+ ~ ((R,+ Tan,)+.) =0.
~=1

Substituting (11) into (12), we get

(12)

+,(r’) + ~
(( J

+ a,n–
))

q5,(r)~(r) ds +~(r’) = O.
n=l n guide

(13)

The range of integration can be changed from guide to

strip, because $(r) = O at the point of aperture. Applying a

property of Kronecker’s delta,

(14)

(13) becomes

Multiplying by ~(r’), and integrating over the annular

strip, we obtain

“+.(r’)~(r’) ds ds’. (16)

A variational expression for& maybe obtained from (6)

multiplying the right-hand side by

and substituting (16) in as the denominator. We then have

RO=–

where N is

~ %(r’)~(r’)d~’~@j(r9~i(O~’
strip Strip

(17)

~~1 f~trip%(r)$(~)%(O~i(r’) ds ds’

chosen for the truncation of the infinite
expansion (16) to obtain suitably accurate numerical re-

sults.

The facts of the infinitesimal thinness of the annular

strip, the symmetry about the plane z = O, and the re-

ciprocity of the structure imply [10] that the scattering
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matrix has the form

va- S : Sam S,a : l+saa

V:+a = 1:s,, “ S,a S,l ‘ S,a

1“ 1[
...................

sV2; “;a:l+saa S,a : Saa
1

v,+

P-a+

J
(18)

The problem is thus reduced to finding the element Si,

(i=l,...,a, j=l,... , a) of the symme~ric a x a matri~.

The element Sti is given by

Sy = Rg (17’)

because each line on which the TEO~ (n= 1,..., a) mode

propagate has unit characteristic impedance.

Applying matrix algebra to the resultant scattering

matrix, we also obtain the impedance and admittance

matrices for the annular strip [4, p. 87].

r gll g12 gl I

I w,, w], W,*-wj,–

function (19) requires large amounts of computation, but

the calculated results obtained by using this trial functicln

are in good agreement with experimental results obtained

by Sheingold [2, Table I] and the authors.

Insertion of the trial function (19) into the expression

(17) for annular strip scattering allows a variational form

fr~m the element of the scattering to be expressed as

where

w’m=~%(r)+.(r)ds.
strip

!(2 l)

Determining the unknown coefficients Cl, ancl Cj, so as

to make the scattering coefficient SY stationary [13], and

using standard matrix techniques [5], we get the relation

for the scattering coefficient

SY=–all (:7,2)

for the following inverse matrix A:

I Hz, Hzz – H21
. . . . . . . . . . . . . . . . . .

H Ml H M2 –HM1

111. MATRIX EQUATION OF THE SCATTERING

COEFFICIENT FOR NUMERICAL CALCULATION

To obtain an expression from (17), from which numeri-

cal values for the element SY of the scattering matrix may

be calculated, a trial function ~(r) may be assumed.

For this discontinuity in a rectangular guide, a very

ingenious technique for obtaining an appropriate trial

function has been presented by Schwinger [6], [1 1], [12].

The appropriate set of basis functions, which lead to a

trial function, were found by means of conformal map-

ping techniques, the quasi-static limit of the kernel

summed in closed form, and the convergence guaranteed

with the trial function of low order. It is desired to apply

this technique to the present discontinuity in the circular

guide, but straightforward application cannot be adopted

due to the difficulties of analytical procedures for circular

systems. Instead of such basis functions, accordingly, we

use relatively simple basis functions.
A convenient approximation for the present discontinu-

ity, therefore, is to assume the linear relation

(19)

I M \\

Wl,-ti,, “

which will lead to expressions easily integrated. The trial

“Plc’”w”’))=o‘2’))

. . gl M g,, 1-’
W,MW,l– W,,”w,,I

. . . HZM – H21

!

(;~3)
. . . . . . . . . . . . . . . . ,.

. . . H MM –HM1

g,,,= Z Wn,Wnr (;~4)
n=l

gls
Hr, =~– —

w,, W,r w,, W,l “

The integrals in (21) can be evaluated using ‘these stan-

dard forms for Bessel functions [2]

Jr2@n~)J,(@ ds
rl

(26a)

– + (Jo(L~2)J2(xn~2) – J1(XJ32’)) (26b)
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Fig. 3. Normalized susceptance of annular strip versus number of
terms N, M= 15, b/a= O.54617.

40 I

[ ! 1 1 d/a=040 I ,40

20
20

1:

6

1:

6

<4
m

‘2

o.;
0./3

06

0.4

0.6

04

v \\\l

\\n

//A \N
0.2

02

0. I
01 0 02 04 06 08 1.0

b/a

(b)

o 0.2 0.4 0.6 0.8 1.0

(a) b/a

30

20

10
8
6

F4
k

‘2

0. k
06

04

0.2

0.1

30

20
d/a=O 40

-4~

~

5

0

hLLb 1:

6

$4
\
m

‘2
1

Ob

06

04

02

01 L ,,. 1 I 1 r! \ I

o 0.2 0.4 0.6 08 10
b/a

(c)

o 02 04 06 08 10

(d)
b/a

Fig. 5. Normalized vafues of the annular strip susceptance as a function of average radius. with its width and free-space
wavelength as parameters. (a) a/A= 0.7. (b) a/A= 0.8. (c) a/A= 0.9. (d) a/A= 1.0.



165SUGIURA AND SUGA: SUSCEPTANCl? OF AN ANNULAX METALLIC STRIP

where

8,=; 62=:. (27)

IV. SUSCEPTANCEOF THE ANNULAR STRIP IN A

CIRCULAR GUIDE WITH INCXDENT TEOI MODE

An annular metallic strip placed in the circular wave-

guide in which the TEO1 mode can propagate but in which

higher circular-electric modes cannot, acts as a shunt

inductive susceptance. The purposes of this section is to

calculate the susceptance of the annular strip in circular

guide with incident TEOI mode.

The interrelation between a shunt susceptance jB/ Y1

across a transmission line with unit characteristic imped-

ance and a scattering coefficient S1, is given by

.B 2s,1

Jy=–l+sll
(28)

where Y, is the characteristic admittance for a TEO1

circular electric transmission line.

In order to show the effects of truncation of the series

(17) and (19), the calculated susceptance of the annular

strip is shown in Figs. 3 and 4 as a function of the

numbers of the terms. With reference to these results, the

numbers of terms N and M can be determined. We set

N= 100 and M= 7 for numerical computations of the

susceptance shown in subsequent figures.

Variation of the average radius b/a of an annular strip

yields curves of susceptance shown in Fig. 5 with annular

strip width d/a as paranwter. It can be seen that maxi-

mum susceptance occurs at b/a= 0.54617, where the inci-

dent electric field E@ is maximum as was expected.

Fig. 6 shows curves of susceptance for the annular strip,

of which the outside edge is in contact with inside wall of

the waveguide (rz = u), as a function of the inside radius r,

of the strip for the frequency a/A= 0,7. Dots in Fig. 6

show the experimental values presented by Sheingold [2,

Table 1]. The theoretical results are in excellent agreement

with the experimental values. From this result, we know

that the trial function (19) used in the computation is

quite suitable for practical purposes [14].

Fig. 7 shows the variation of the scattering coefficients

of the higher TEO. modes as a function of the average

radius of an annular strip with d/a as a parameter. The

scattering of the higher mode is sharply decreased at

specific average radii which depend on the value of n.

From Fig. 7, we can determine a suitable average radius

to restrain the generation of the TEOZ mode. This radius is

approximately equal to b/a=xl/Xz=0.54617 which is

obtained with

G02(Y,Z; b) =0 or .J, (Xzb/a)=O (29)

where GOZrepresents the second term of Green’s function

(2). This equation means that no field of the TE02 mode

arises from a current along an infinitesimally thin annular

strip. In the following, therefore, we carry out the calcula-

tions for an annular strip having such an average radius.
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The normalized susceptance of (28) are plotted in Fig. 81

as functions of d/a for values a/A over the range 0.65 s’

a/#1 < 1.10. These theoretical results are in good agree-

ment with experimental values.

Susceptances of the annular strips were measured bY

the tangent method [5, p. 215]. The inside diameter of tht~

circular waveguide which we used for measurements is 51

mm. The experiments were made in the frequency range
8.8< ~(GH) <10.0, such that in the waveguide all TEO,,

modes except the TEO1 mode were in a cutoff regj~on. q~~

annular metallic strips were made by etching from a

copper plate of 0.07-mm thickness. The annular metallic

strips were supported by a polyfoam column of which
dielectric properties were quite close to those of air.. .
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TABLE I
COMPUTED SCATTERING MATRIX ELEMENTS FOR ANNULAR

METALLIC STRIP

;.i 1 2 3

1 -0.335+0.0591 0.006+0.0241 0.466-O .038i

2 0.006 +0.024a -O .026+0 .148L -0.018+0.0161

3 0.466-0.0381 -0.019+0.0151 -0.653+0.0851,
d/a = 0.2, b/a = 0.546, a~~ = 1.7, I=fl

TABLE II
COMPUTED SCAITERSNG COEFFICIENTS OF ANNULAR STRIPS AS A FUNCTION OFITSWIDTH

(A) %1
1 -0.188+9 .121i

3 -0.269+0.0761

5 -0.337+0.0611

7 -O -408+0 .0871

-0.533+0.1631

-.

P

-0.913+0.1531

-O .982+0 .0681

No.

%2 % 3 s 22 ’23 ’33
0.000+0.0001 0.512–0.2011 0.000 +0.007i -0.ool+o.ooli -0.519+0.3351

0.005+0.0081 0.422-0-1121 -o-oo2+o.0541 -o .oo8+o .oo71 -o.664+o.179i

0.006+0.0221 0.424-0.0691 -o-021 +o-14511 -o -o18+o -o151 -o.656+o-091L

-O .003+0 .0481 0.480+0.0271, -0.094+0.2781 ! -0.035+0.0301 -0.603+0.0721

-0.043+0.0621 0.446+0. 1331! -0.255+0.4271, -0.077+0.0391; -0.570 +0.144i

,

-0.086+0.0191 O. 299+0. 2271 -O. 566+ O.467L! -0.124-0.0091 ~-0.661+0. 258i

-0.058-0.0351 0.113+0.1941 -o-824 +0.353LI -o. ~~8-O.0751 -o.848+o.253L

-0.017-0.0331 O.265+O.1OOI -0.953 +0.192i] -0.030-0.0681 -0.959 +0.150i

2, FEBRUARY 1979

a= 25.5 ma, b = 13.9 MM, f = 20 GH, (b/a= 0.546, a/h = 1.7)

V. SCATTERING MATRIX OF THE ANNULAR STRIP IN
modes can propagate. Table I shows the calculated

A CIRCULAR GUIDE WITH INCTDENT TEO~ MODES scattering matrix.
As an example of the numerical computation of (17), Certai~ general properties of the scattering coefficients

the scattering matrix of the annular strip is calculated for may be deduced from general principles [9]. In the follow-
the frequency a/A = 1.7 at which higher TEO~ (n= 1,2,3) ing, we will check whether these properties are satisfied or
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not by inspection of the numerical values of the scattering

coefficients given in Table I.

A. The Reciprocity Relations

From Section II, the normalized mode functions have

been defined by (4). This corresponds to choosing an

equivalent characteristic impedances equal to unity. The

scattering matrix, therefore, must be symmetrical [9], SY=

s,,.

By inspecting the values of the scattering coefficients

given in Table I, we see immediately that the symmetrical

condition is satisfied with only a very small amount of

error.

B. The Unitay Relations

The structure under consideration is nondissipative,

hence, the power-conservation condition must be satisfied.

This condition can be reduced to the unitary condition of

the scattering matrix by means of matrix algebra [9]

[S],[s]”= [u]. (30)

Inserting the values of elements of the scattering matrix

given in Table I into the left-hand side of (30), we confirm

that the values of elements in the resultant matrix deviate

from the unit matrix within 6/ 1000. From this fact, it is

known that the unitary condition is approximately satis-

fied.

The scattering coefficients are tabulated in Table II as a

function of the strip width d with a/A= 1.7 at which TEO.

(n= 1,2, 3) modes propagate. From these results, we see

that, first, the values of the scattering coefficients having

subscripts i = 2 or j = 2 are very small for narrow strips,

because the average radius of the annular strip was chosen

as b/a= 0.54617 in connection with (29), and second, the

scattering coefficient S1~ which is relevant to a shunt

susceptance increases from nearly 0.2 to 0,98 according to

the increase in the strip’s width d from 1 to 15 mm.

VI. CONCLUSION

The main results of the analyses and examples pre-

sented in this paper are as follows.

1) The variational expression of the scattering matrix

for an annular metallic strip in a circular waveguide in

which multimode (TEO., n = 1, . . . ) propagate have been

given.
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2) Using the matrix element SI, of the scattering

matrix, the susceptance of the annular strip in a circular

guide has been calculated for the TEO1 mode propagation.

A numerical calculation gives results which agree closely

with the values obtained by experimental methods over a

wide range of conditions.

3) Certain modes can be suppressed from the scattered

waves by choosing the average radius of the annular strip.

This could be useful in some application where a part~cu-

lar mode is harmful.

4) Numerical results of the scattering matrix were ob-

tained. For simplicity, only the modes TEO., n =1.2,3

have been assumed to propagate. It is easy to see, how-

ever, that higher TEO., n =4,5,... modes can also It)e

assumed to propagate without unduly increasing the coln-

putation time. Results derived here, therefore, should be

easily applied to propagation in oversized circular wavle-

guides such as those commonly used with millimeter

wavelengths.
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