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unexpected. If the formula for a double diaphragm, one
from each side in an unstepped waveguide, is examined, it
is readily seen that the separate capacitance terms do not
simply add. There is a mutual coupling between them, as
would indeed be expected, accompanying the change of
aperture field that one diaphragm induces on the other.
Apparently, this rather general feature is absent in the
two-to-one waveguide step with a junction diaphragm.
Although the field is distorted by the diaphragm, the net
excess charge due to the step is merely redistributed, a
rather unexpected outcome. The formula has been
checked by colleagues who find it correct, but who have
no physical explanation for the finding. It is not known if
it is a freak result coincidental on the two-to-one step
ratio. Since, currently, the singular integral equation tech-

The Susceptance of an
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nique can only handle this case the effect of altering the
step ratio on the diaphragm interaction is not, at the
present time, resolvable.
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Annular Metallic Strip

in a Circular Waveguide with
Incident TE;; Mode

TORAHIKO SUGIURA, MEMBER, 1EEE, AND HIROSHI SUGA, MEMBER, IEEE

Abstract—The principal aims of this paper are twofold: 1) to solve the
problem of the scattering of a thin, perfectly conducting annular strip
suspended in a multimodal circular waveguide in which any number of
TE,,, modes can propagate, and with the aid of this result, 2) to give the
susceptance of the thin annular strip in monomodal circular guide with an
incident TEy; mode. These are treated with a variational approach.

Applying the appropriate Green’s functions to the continuity equations
for the transverse electric field yields a variational expansion for the
scattering matrix elements. This is treated with a Rayleigh-Ritz procedure
and matrix methods.

Curves of normalized susceptance as a function of the free-space
wavelength and the size of the annular metallic strip are shown. These
results are in good agreement with experimental data,

Tables of the scattering coefficients for a typical wavelength versus strip
size are also included.

I. InTRODUCTION

N RECENT YEARS, an experimental millimeter-
wave telecommunication system has been constructed
in our country [1]. The circular waveguide capable of
propagating the dominant circular-electric mode is ideally
suited as a low-loss transmission line in the millimeter-
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Wave guide

Diaphragm

td)

Cross sectional view Equivalent circuit

Fig. 1. Metallic plate diaphragms of zero thickness and their equiv-
alent circuit (TEy, mode in circular waveguide).

wave region. Inductive metal irises of zero thickness in
such circular waveguides (see Fig. 1) have been investi-
gated and documented [2]-[4]. In these reports, the find-
ing of the susceptance when the TE,, mode was incident
was the main goal.

Problems of susceptance for discontinuities in wave-
guides have been widely studied during the past decade.
Except for a few special discontinuities, exact solutions
are not available and approximate methods must be used.
Of the approximate techniques, the variational and in-
tegral-equation methods are applicable to a wide range of
problems, and produce sufficiently accurate results for
most purposes. The former method is described by Collin

0018-9480,/79 /0200-0160$00.75 ©1979 IEEE
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Wave guide

Z=0

annular metallic
strip plane

®

©

Fig. 2. Annular metallic strip of zero thickness and its equivalent

network (TE,,, n=1,...,a modes in waveguide). (a) Cross-sectional
view. (b) Side view. (c) Equivalent network.

[5]. while the work of Lewin [6] is well known in connec-
tion with the latter.

Before the advent of high-speed computers, it was
advantageous to expend considerable effort in manipulat-
ing solutions analytically into a form which minimized the
subsequent computational effort. It is now often more
convenient to use methods which are analytically simple,
but require great amounts of computation. Furthermore,
many problems of practical interest can be solved only by
the use of such straightforward methods.

This paper is concerned with the determination using
computerized methods of the susceptance and the scatter-
ing matrix of an annular metallic strip (see Fig. 2) to
incident TE,, modes. The annular strip placed in the
circular waveguide in which the TE,; mode can propa-
gate. but in which the higher circular electric modes
cannot, acts as a shunt inductive susceptance, as shown in
Fig. 1(d). If the higher TE,, (n=1,2,---,a) modes can
also be assumed to propagate, on the other hand, the
annular strip may be represented by a multiports equiv-
alent network as shown in Fig. 2(c).

An annular strip might be useful, for example, in build-
ing a bandpass filter. Two annular metallic strips placed
in the circular waveguide an integral multiple of half-wave
lengths apart behave as a cavity resonator for the incident
TE,;; mode. These cavity resonators with a quarter wave
length separation constitute a bandpass filter for the TE,
mode in the circular waveguide. A bandpass filter of this
type has been shown by the authors [7].

Recently, a very ingenious technique for obtaining an
equivalent network for this discontinuity in a rectangular
waveguide with incident TE,; mode has been presented
by Rozzi et al. [8]. It is possible to obtain an equivalent
wide-band network with frequency-independent elements.
It is desirable to apply this technique to the present
discontinuity in the circular waveguide, but straightfor-
ward application cannot be adopted due to the difficulties
in analytical procedures for the circular coordinate sys-
tem. Therefore, instead of that technique, we use a
numerical method, requiring large amounts of computa-
tion, but analytically simple.

In the first part of this paper, the problem of the
scattering coefficient is investigated for a thin, perfectly
conducting annular strip suspended in a multimodal
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waveguide in which TE,, (rn=1,2,---) modes can propa-
gate. Applying the appropriate Green’s function to the
continuity equations for the transverse electric field yields
a variational expansion for the scattering matrix elements.
This expansion is then treated with a Rayleigh—-Ritz pro-
cedure and matrix methods.

In the second part of this paper, the susceptance of this
annular strip in a monomodal circular guide with an
incident TE,, mode is developed. The normalized suscep-
tance B/Y, is obtained using the well-known relation
JB/Y,=—-28,,/(1+8§,)) for the scattering matrix S.

II.  VARIATIONAL EXPRESSION OF THE SCATTERING
COEFFICIENT

The annular metallic strip shown in Fig. 2 is assumed to
possess infinite conductivity and negligible thickness. The
solution to this problem will be formulated in terms of a
variational expression involving the current on the annu-
lar strip located at z=0.

Let a TE, mode be the incident mode. The incident
electric field has only a ¢ component. Since the annular
strip is uniform in the ¢ direction, the only higher modes
excited by the annular strip are the TE, modes. The
incident field excites a current distribution I(r) on the
annular strip. This current flows in the ¢ direction with a
constant amplitude, since the incident field has no varia-
tion with respect to ¢. The field excited by the annular
strip in the waveguide may be evaluated in terms of
currents on the annular strip using Green’s function for
the TE,, modes.

With strip and r* denoting the surface and radius,
respectively, of an annular strip, the excited field £, is
given by

E(rz)= f G(r.z;r)I(F) ds' [5]. (1)

strip

I(r") is the current distribution excited by the incident
TE,, mode having unit amplitude. Therefore, ds’=2xr'dr’
(r;<r'<r,), and

G(rz;r)=— ok > 1(t7)

J (e Tl (2
27a® 1=1 T,J3(x,) (1) @

[5], where u,=x,/a, T,=@?—k»"?, « is the angular
frequency, p is the magnetic permeability, a is the radius
of the circular waveguide, J,(x) is the Bessel function of
the first kind for order n, yx, is the nth root of J,(x)=0,
k=w( pe)'/?=2m /A is the free-space wavenumber, and « is
the electric permitivity.

Jt 1s evident, from (1) and (2), that the discontinuity
excites an infinite number of modes. However, if the
waveguide is standard or moderately oversize, only a
limited number of modes appear at a point on the guide
sufficiently removed from the strip.

Now consider the case in which the guide cross section
is arranged so that only & modes propagate, the remaining
modes being damped exponentially. In this case, a far-
field equivalent circuit of the discontinuity is as illustrated
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in Fig. 2(c), where terminals 7, and 7, are placed at
z=0", and 0%, respectively. ¥, (n=1,---,2a) and V,~
(n=1,--+,2a) are the amplitudes of the electric field in
the incident and reflected wave components, respectively,
of the TE,, mode field at terminals.

The transverse electric fields at the terminal plane (z=
0) are described by

E,(n=(V*+ V7 )g(r) ©)

where ¢ () are the mode functions in the transverse form
of the TE,, mode. The normalization of the mode func-
tions is such that the total inward power flow at the
terminal is given by 1/2(|¥,*?~|V,"|*); corresponding to
the choice of unity as the characteristic impedance of the
jth line [9]. The normalized mode function is described by

(e 1
o0=(2E)" gl @

From (1), (2), and (4), the reflected TE; mode is seen to
be

E(re)=—50() [ S e (9)

Setting z=0 and E(r,0)= R,;9/{(r), we get

1 4 / ’
By= =3 [ M) & ©

where R, is the reflection coefficient of the TE,, mode for
an incident TEy; mode.

On the other hand, the following continuous equations
for the conductive surface of the strip (z =0) are obtained
for an incident TE,; mode:

o)+ 2 ReN= 2 T,e0=0 ()

Y, (r)— 2 YR, ,(r)— 2 Y, T, ,(r)=1(r) (8)

where Y, =T, /jwp and T,; is the transmission coefficient
of the TE,, mode for an incident TE,, mode. Multiplying
(8) by ¢,(r), and integrating over the cross section of the
waveguide, we get

Lo ds=Y, [ o(De)

guide

- S NEAT) [ an0)d ©)

Using the orthogonal properties of the Bessel function, we
have

6nk
Lo i 0)(r) ds= 3 (10)

where §,, is the Kronecker’s delta. Combining (10) with
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9), we get
8
fg e d=Y,F - _(R,g+ T,) (1)

hence,

Y
(Ry+ T =3 8u= [ e (r) s, (11b)

guide

From (7) we have

800+ 3 (R,+T)o (=0 (1)
Substituting (11) into (12), we get
r 2§ ~ r)(r)ds r
o1+ 3 (0. [ a0 8o o0
(13)

The range of integration can be changed from guide to
strip, because /,(r)=0 at the point of aperture. Applying a
property of Kronecker’s delta,

2[5

7 ,nqs,,(r))=¢1(r’) (14)

(13) becomes

(=2 3 [ a0 dea). (15)

n=1 vstrip

Multiplying by I(r’), and integrating over the annular
strip, we obtain

1

f () (r)ds'= 3 >
strip 2 n=1

[], 2010

*6,(r)1(r) ds ds'. (16)

A variational expression for R, may be obtained from (6)
multiplying the right-hand side by

[ sias/ [ e()p(ryds=1
strip strip
and substituting (16) in as the denominator. We then have

fs ALV [ (1)

=" (17)
ngl f fstﬁp¢"(r)lj(r)¢"(r NVI(r) ds ds’

where N is chosen for the truncation of the infinite
expansion (16) to obtain suitably accurate numerical re-
sults.

The facts of the infinitesimal thinness of the annular
strip, the symmetry about the plane z=0, and the re-
ciprocity of the structure imply [10] that the scattering
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matrix has the form

i Vl_ -‘ [ Sll Sla 1-*_Sll Sla ]
Vof _ Sla , Saa Sla 1+Smx
Vita 1+8), 0 Sia St D S
V2_ L Sla <1+ Saa Sla : Saa
L o ] . . A
- v ]
V+
’ . (18)
Vl-:—tx
Via
The problem is thus reduced to finding the element
(i=1,--,a, j=1,--- &) of the symmetric a X a matrix.
The clement S, is given by
S,=R, 17)
because each line on which the TE,, (n=1,---,a) mode

propagate has unit characteristic impedance.

Applying matrix algebra to the resultant scattering
matrix, we also obtain the impedance and admittance
matrices for the annular strip [4, p. 87].

811 8iz  8n
WaW, WaW, WaW,

Hy, Hyy— Hy,

Hy, Hy,— Hyp

III. MATRIX EQUATION OF THE SCATTERING
COEFFICIENT FOR NUMERICAL CALCULATION

To obtain an expression from (17), from which numeri-
cal values for the element S, of the scattering matrix may
be calculated, a trial function I(r) may be assumed.

For this discontinuity in a rectangular guide, a very
ingenious technique for obtaining an appropriate trial
function has been presented by Schwinger [6], [11], {12].
The appropriate set of basis functions, which lead to a
trial function, were found by means of conformal map-
ping techniques, the quasi-static limit of the kernel
summed in closed form, and the convergence guaranteed
with the trial function of low order. It is desired to apply
this technique to the present discontinuity in the circular
guide, but straightforward application cannot be adopted
due to the difficulties of analytical procedures for circular
systems. Instead of such basis functions, accordingly, we
use relatively simple basis functions.

A convenient approximation for the present discontinu-
ity, therefore, is to assume the linear relation

M
[(N= 3 Gutnl?) (19)

which will lead to expressions easily integrated. The trial
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function (19) requires large amounts of computation, but
the calculated results obtained by using this trial function
are in good agreement with experimental results obtained
by Sheingold [2, Table I] and the authors.

Insertion of the trial function (19) into the expression
(17) for annular strip scattering allows a variational form
from the element of the scattering to be expressed as

M M 0 M \
( 2 CJsVst)( z CirVV;r)_i-Sy 2 (( E st Wns’
s=1 r=1 n=1 s=1 J

M
($cm))-o oo
r=1
where

W= J . 8:00(1) s @y

Determining the unknown coefficients C, and C so as
to make the scattering coefficient S, stationary [13], and
using standard matrix techniques [5], we get the relation
for the scattering coefficient

S,=—ay (22)
for the following inverse matrix A4:
-1
Sty En

WuW, WaW,

H,,— H,, (23)
Hyp— Hyyy

o0

grs = 2 W"I Wnr (:24)
n=1

7 - S— i (25)

TWW, WoW

The integrals in (21) can be evaluated using these stan-
dard forms for Bessel functions {2]

frerl(u,,r)Jl(ufr) ds

1

)
= L (6 1B o8
Xs — Xn
=Xl 18 o(X81))
26]

- xg‘xn (71082 (:55)

= X% 1(X:82)J (X 82)) (26a)
frlr(Jl(u,,r))Z ds
a’s} 5

= —Z_(JO(Xnal)JZ(XnSI) —Jj (anl))
a’; ~ .,

T (‘]O(XnSZ)J?_(XnSZ) - Jl(anz)) (26b)
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Fig. 5. Normalized values of the annular strip susceptance as a function of average radius, with its width and free-space
wavelength as parameters. (a) a/A=0.7. (b) a/A=0.38. (c) a/A=0.9. (d) a/A=1.0.
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where

(27)

IV. SUSCEPTANCE OF THE ANNULAR STRIP IN A
CircuLAR GUIDE WITH INCIDENT TE;; MODE

An annular metallic strip placed in the circular wave-
guide in which the TE,; mode can propagate but in which
higher circular-electric modes cannot, acts as a shunt
inductive susceptance. The purposes of this section is to
calculate the susceptance of the annular strip in circular
guide with incident TE;, mode.

The interrelation between a shunt susceptance jB/Y,
across a transmission line with unit characteristic imped-
ance and a scattering coefficient S, is given by

B __ 25u
/Y, 1+5,,

(28)

where Y, is the characteristic admittance for a TEgy
circular electric transmission line.

In order to show the effects of truncation of the series
(17) and (19), the calculated susceptance of the annular
strip is shown in Figs. 3 and 4 as a function of the
numbers of the terms. With reference to these results, the
numbers of terms N and M can be determined. We set
N=100 and M =7 for numerical computations of the
susceptance shown in subsequent figures.

Variation of the average radius b/a of an annular strip
yields curves of susceptance shown in Fig. 5 with annular
strip width d/a as parameter. It can be seen that maxi-
mum susceptance occurs at b/a=0.54617, where the inci-
dent electric field £, is maximum as was expected.

Fig. 6 shows curves of susceptance for the annular strip,
of which the outside edge is in contact with inside wall of
the waveguide (r,= a), as a function of the inside radius r,
of the strip for the frequency a/A=0.7. Dots in Fig. 6
show the experimental values presented by Sheingold {2,
Table 1]. The theoretical results are in excellent agreement
with the experimental values. From this result, we know
that the trial function (19) used in the computation is
quite suitable for practical purposes [14].

Fig. 7 shows the variation of the scattering coefficients
of the higher TE,, modes as a function of the average
radius of an annular strip with d/a as a parameter. The
scattering of the higher mode is sharply decreased at
specific average radii which depend on the value of n.
From Fig. 7, we can determine a suitable average radius
to restrain the generation of the TE,, mode. This radius is
approximately equal to b/a=x,/x,=0.54617 which is
obtained with

Go(r,z;6)=0 or J,(x,b/a)=0 29)
where G, represents the second term of Green's function
(2). This equation means that no field of the TEy, mode
arises from a current along an infinitesimally thin annular
strip. In the following, therefore, we carry out the calcula-
tions for an annular strip having such an average radius.
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Fig. 7. Scattering coefficients of (a) TE,, (b) TEq;, (c) TEq, modes for
incident TE;, mode as a function of average radius of the annular
strip, with its width as a parameter. (a) n=2. (b) n=3. (c) n=4.

The normalized susceptance of (28) are plotted in Fig. &
as functions of d/a for values a/\ over the range 0.65<
a/A<1.10. These theoretical results are in good agree-
ment with experimental values.

Susceptances of the annular strips were measured by
the tangent method [5, p. 215]. The inside diameter of the
circular waveguide which we used for measurements is 51
mm. The experiments were made in the frequency range
8.8< f(GH)< 10.0, such that in the waveguide all TE,,
modes except the TEy mode were in a cutoff region. The
annular metallic strips were made by etching from a
copper plate of 0.07-mm thickness. The annular metallic
strips were supported by a polyfoam column of which
dielectric properties were quite close to those of air.
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TABLE I
COMPUTED SCATTERING MATRIX ELEMENTS FOR ANNULAR

METALLIC STRIP

Nd 1 2 3
1 | -0.335+0.0591| 0.006+0.0241 | 0.466-0.038i
2 | 0.006+0.0241| -0.026+0.1481 | -0.018+0.0161
3 | 0.466-0.0381| -0.019+0.0151 | -0.653+0.0851
d/e = 0.2, bja = 0.546, a/x = 1.7, 1= /-1

COMPUTED SCATTERING COEFFICIENTS (;I;A:leugm STRIPS AS A FUNCTION OF ITS WIDTH

(m?n) S §12 513 522 523 5
33
1 |-0.188+0.121i| 0.00040.0001| 0.312-0,2013| 0.000+0.007i|-0.001+0.0011|~0.519+0.3351
3 1~0.26940.0761| 0.005+0.0081| 0.422-0.1121]-0.002+0.0541]-0,008+0.0071|~0,664+0.1791
5 1-0.3%7+0.0611| 0.006+0.0221| 0.424~0.0691]-0.021+0.1451|~0.018+0.0151|~0.656+0.0911
7 1=0.408+0.0871 |-0.003+0.0481| 0.480+40.0271|-0.094+0.2781!-0.035+0.0301 -0.603+0.0722
9 |~0,5%3+0.1631 |-0.04340.0621| 0.44640.1531] -O.255+O.4271; —O.O77+O.0391f ~0.570+0.1441
11 {~0.7%4+0.2141 |-0.086+0.0191 0.299+0.2271 -0.566+o.4671§-0.124—0.0091 -0.661+0.2581
13 [~0.913+0.15%1 |~0.058-0.0351] 0.113+0.1941 -0.824+o.3531f—0.088—0.0751 ~0.848+40.25%1
15 |-0.982+0.0681 |-0.017-0.0331] 0.265+0.1001 —o.953+o.1921j‘ —0.030—0.0681i-0.959+0.1501
2a=25.5mm, b=13.9mm, £ =20 GH, (b/a= 0.546, a/an = 1.7)

V. SCATTERING MATRIX OF THE ANNULAR STRIP IN
A CIRCULAR GUIDE WITH INCIDENT TE,, MODES

As an example of the numerical computation of (17),
the scattering matrix of the annular strip is calculated for
the frequency a/A=1.7 at which higher TE,, (n=1,2,3)

modes can propagate. Table 1 shows the calculated
scattering matrix.

Certain general properties of the scattering coefficients
may be deduced from general principles [9]. In the follow-
ing, we will check whether these properties are satisfied or
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not by inspection of the numerical values of the scattering
coefficients given in Table 1.

A. The Reciprocity Relations

From Section II, the normalized mode functions have
been defined by (4). This corresponds to choosing an
equivalent characteristic impedances equal to unity. The
scattering matrix, therefore, must be symmetrical [9], S, =
S,
! By inspecting the values of the scattering coefficients
given in Table I, we see immediately that the symmetrical
condition is satisfied with only a very small amount of
error.

B. The Unitary Relations

The structure under consideration is nondissipative,
hence, the power-conservation condition must be satisfied.
This condition can be reduced to the unitary condition of
the scattering matrix by means of matrix algebra [9]

[ST[sT*=[V].

Inserting the values of elements of the scattering matrix
given in Table I into the left-hand side of (30), we confirm
that the values of elements in the resultant matrix deviate
from the unit matrix within 6/1000. From this fact, it is
known that the unitary condition is approximately satis-
fied.

The scattering coefficients are tabulated in Table II as a
function of the strip width d with a /A= 1.7 at which TE,,
(n=1,2,3) modes propagate. From these results, we see
that, first, the values of the scattering coefficients having
subscripts i=2 or j=2 are very small for narrow strips,
because the average radius of the annular strip was chosen
as b/a=0.54617 in connection with (29), and second, the
scattering coefficient S;, which is relevant to a shunt
susceptance increases from nearly 0.2 to 0.98 according to
the increase in the strip’s width & from 1 to 15 mm.

(30)

VI

The main results of the analyses and examples pre-
sented in this paper are as follows.

1) The variational expression of the scattering matrix
for an annular metallic strip in a circular waveguide in
which multimode (TE,,, n=1,...) propagate have been
given.

CONCLUSION
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2) Using the matrix element S;; of the scattering
matrix, the susceptance of the annular strip in a circular
guide has been calculated for the TE;, mode propagation.
A numerical calculation gives results which agree closely
with the values obtained by experimental methods over a
wide range of conditions.

3) Certain modes can be suppressed from the scattered
waves by choosing the average radius of the annular strip.
This could be useful in some application where a particu-
lar mode is harmful.

4) Numerical results of the scattering matrix were ob-
tained. For simplicity, only the modes TE;,, n=1,2,3
have been assumed to propagate. It is easy to see, how-
ever, that higher TE,,, n=4,5,... modes can also be
assumed to propagate without unduly increasing the com-
putation time. Results derived here, therefore, should be
easily applied to propagation in oversized circular wave-
guides such as those commonly used with millimeter
wavelengths.
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